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A model  of weak turbulence amenable  to solution is investigated. There are three modes of interacting 
waves whose laws of dispersion are so chosen that it  is possible to go over to the diffusion approximation 
in k-space.  The s teady-s ta te  spectrum of the turbulence in the presence of regions of instabili ty,  trans- 
parency and damping is found. The formaI apparatus of  nonlinear wave dynamics is also discussed. 

In the investigation of plasma turbulence cases are encountered where the turbulent state is a system of intense in- 
teract ing oscillations. If  it  is assumed that the ampli tudes of the oscil lat ions are not too large and the random phase hy-  
pothesis is adopted, this state may be described with the aid of  the kinet ic  equation [1-4]. In these circumstances it is 

natural  to speak of weak plasma turbulence. 

Mathemat ica l ly ,  the kinet ic  equations are very hard to solve, so that it  is customary to make do with an es t imate .  
A similar  situation exists in connection with the theory of  gravi tat ional  waves at the Surface Of a l i qu id .  Accordingly! it 
is convenient  to talk in terms of general  nonlinear wave dynamics, i . e . ,  tO consider an arbitrary medium in which waves 

subject to nonlinear interact ion can propagate. 

Within the framework of nonlinear wave dynamics i t  is possible t ~ construct models for which the kinet ic  equations 
can be solved. The study of one such model  is the subject  of this ar t icle .  The possibility of solving the model  exists be-  
cause in a given case we can go over to the diffusion approximation in k-space  and solve the differential  equations ob- 
tained. We can also get the s teady-s ta te  spectrum of the turbulence in the presence of a region of instabil i ty and a re-  
gion of damping. 

In this ar t ic le  the author applies the apparatus of nonlinear wave dynamics, which Was previously employed,  at 
least  in part, in [1, g]. Since this apparatus is not general ly known, it wil l  first be described in some detai l .  

1. Formalism of nonlinear wave dynamics.  T h e  essence of  the method consists in going over to new variables - 
complex wave ampli tudes that are classical  analogues of the quantum operators of par t ic le  production and annihilat ion.  
The transition has a para l le l  in the method of variat ion of arbitrary constants in the theory of differential  equations. 

Consider wave propagation in an infinite homogeneous medium. Let the medium be described by a set of n real  

variables •  . . . . .  • dependent on t ime and the coordinates, and le t  these variables satisfy an equation containing a l in -  
ear and a bi l inear  part and which is invariant  with respect to space - t ime  displacements.  

In its most general  form this equation may be written: 

, f dtx i drtG,~,~ ( t -  tl, r - -  rl) X,~ (tl, rt) dtldrl = (1.1) 
t t , -  

= S dtt S dt, SdrlSdr,Lnmz(t--tl, t - - t 2 , . r - - r l ,  r - - r 2 ) x m ( h , r l ) X , ( t 2 , r , )  
- - O O  - - O O  , ~ ,~/ 

where Gnm and Lnm / are real  coeff ic ient  functions. If  Eqs. (1.1) are differential ,  they contain derivatives of the 6- func-  

tions. 

After a Fourier transformation with respect to time and the coordinates, we get: 

• 8 (o  - -  ox - -  02) 8 (k . -  kt - -  k~) X• (kl, tat) XI (kt, o , ) .  
(1.2) 

Since the starting functions are real,  the Hermite  conditions 

X. + (k, co) = X,~* ( - -  k ,  - -  o )  = X- (k ,  o ) ,  Gnm + (k, 0~) = Gnr~ (k, o~) (1. 3) 

L.*mz (o ,  0h, o~, k ,  k t ,  k ~ ) =  L~,~I (o ,  o r ,  02;  k ,  k l ,  k~) 

are fulfi l led.  We shall  assume that  ~o is complex.  Then G and L possess definite analyt ic  properties with respect to the 

frequency variables.  

If it  is to be meaningful  to speak of  l inear iza t ion,  the  function Lnm/(~0, r v w 2, k, k t, kz) must not become infin-  

i te for real  values of the arguments." The l inear ized  equation has. the form: 
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a .m (k, o) XI~ (k, ~) = 0 
It has a solution for certain values of cos(k) determined from the condition 

det  ] Gnm ] = 0 (1.4) 

We shall make the following assumptions concerning the zeros of Eq. (1.4). 
1) The number of zeros is finite, which corresponds to a finite number of wave modes capable of propagating in 

the medium. 

2) The zeros enter into Eq. (1.4) in pairs, so that positive and negative subscripts can be attached to them, and 

0) i ,  ( k ) - -  -4- 0)0~ (k) q- iv (k) . (1.5) 

The reai part of the frequency can be made positive. This condition is the result of symmetry with respect to re- 
flection of the coordinates and holds for a medium at rest. 

3) The function C%s(k ) ~ 0. This condition enables us to exclude nonwavelike motions of the medium. In real 
problems, in hydrodynamics, for example, such motions may be present, in which case they must be considered separ- 
ately. 

We shall also disregard the case of mult iple roots of Eq. (1.4); this arises, for example, in connection with waves 
of different polarization in a nongyrotropic medium. In principle, this case is not any more difficult, but it does lead to 
more complicated calculations. 

The general Hermitian solution of Eq. (1.4) is 
P 

X~ (k, co) ---- ~ A.~ (k) a.  (k) (3 (co - -  (% (k)), A~, _, (k) = An~ + (k) 
~=-p (I. 6) 

a_~ (k) = a / ( k )  . 

We shall seek a solution of nonlinear equation (1.2) in the form: 

where a s (k, co) are the new variables. 

P 

X,~ (k ,  (o) ---- ~] A , ~  (k)  a~ (k ,  (o) 

We substitute (1. 7) in (1.2). The left side of Eq. (1.2) assumes the form: 

(i. 7) 

G,~r~ (k, (o) A,~, (k) a, (k, m) = a ~  ~) (k, co) ( ( o -  % (k)) a, (k, o)). (1. S) 

The rank r of the matrix Gn(s 1) is equal to the rank of the matrix Ans, and, obviously, can not be greater than 2p. 
If r = 2p, then the transformed equation can at once be solved with respect to (aJ - cos(k))as (k, co). If r < 2p, it is nec-  

essary to impose 2p - r additional conditions on a s. We choose these conditions in the form: 

Z (CO - -  co 8 (k ) )~a s  (k)  --~ 0 (o~ = t . . . . .  2t) - -  r) \ .  ( 1 . 9 )  

Obviously, they are independent of each other and can not be expressed linearly in terms of Ans(k ). Equations (I. 8) and 

(I. 9) can be solved with respect to (co - cos(k))as(k, co). As a result we get: 

x a ((o - -  m~ - -  0)2) a ( k - -  k~ - -  k~) as~ (k~, (o0 a~2 (k2, 0)2) 

where Mssls 2 is the transformed function Lnm/. After an inverse Fourier transformation with respect to t ime we get: 
t t 

--co --oo (I. ii) 

If the amplitudes are small enough, Eqo (1, 11) can be simplified. We shall make the change of variables 

a, (k,  t) = c, (k, t) e -~ ' '  (k) t ,  (1. 12) 

Substituting (I. 12) in (I. II), we get: 

co  oo  
�9 0C$'  

0 0 

11 



R Msa~2 (xl, x~, k ,  kl ,  ks) c~1 (t - -  x~, kl) co (t - -  x, ks) exp  (i[o)s,(klxi-l-e)~.(ku)'~]}-. 

If the c s are sufficiently small, we can neglect the derivatives of c s with respect to time, as in the Bogolyubov- 
Krylov method, and take Csl and cs~ out of the integrals with respect to v. Reverting to the variables a s, we get: 

"(i O (k ) )a~(k ,  t) = Idk l c l k~N~s , , 2 (k , k~ , k~ )6 (k - - k z - - k~ )a , , ( k l )a~2(k~)  ~ - -  0-38 

(1. 13) 
~0 O0 

0 0 

If the starting equation has the form 

0Xn 
cc n , - , " )  ( , ' )z,  (,") i -bE + ~ H~.~ (r - -  r ' )  X,~ (r ') dr '  ---- ~ . .~  (r - -  r ' ,  dr' dr" 

then the equations at once assume the form (1. 13). 

Note that no use is made of the commutative nature of the multiplication of the quantities • and a s. This means 
that the above procedure is applicable to quantum theory. In this case, equations (1. 13) and (1. 14) will be the Heisen- 
berg equations for the operators of particle annihilation and production. We now note that a_s(k ) = a~(-k). Substituting 
this relation in (1.13) and changing sign where necessary, we finally get: 

(,o I - -  (o. (k)) as (k) - -  dk~ dk~ ,rA r, (~)s~s' (k, k~, ks) 6 (k - -  k l  - -  ks) a,~ (k~) • 

N (a) • as~. (ks) -}- 2N.(~s, (k, kt ,  ks) 6 (k -+- kz ~ ks) as,* (k~) % (ks) -~ . s,s, • (1. 14) 

• (k, kl, ks) 6 (k + kl -t-ks) as,* (k~) ass* (ks)] 

We shall call  Eqs. (1. 14) the equations in normal form. They coincide in number with the number of wave modes. 

Special interest attaches to the case in which the medium is transparent. Then all ~s(k) are real, and there is a 
normalization o f a  s such that definite symmetry relations exist between N (1), N (z), and N (3). 

If we determine the transparency of the medium as the invariance of some real functional of a s with a bilinear and 
a trilinear part, we can show that this functional H is a Hamiltonian for the system, and Eqs. (1, 14) are obtained by 
varying H in accordance with the rule 

�9 0 %  6H 
L at ----~%* " (1.15) 

The most general form of this Hamiltonian is 

---- ~ '  i o)s (k) a, (k) as* (k) dk ~ l [Hs(]~" (k, kl, k~) as* (k) as, (kx) as, (ks) + / /  
S 

~r *a) (k, k~, ks) a.  (k) a,,* (kx) % *  (ks)] 6 (k - -  k z - -  ks) dk~ dks + " ~  .L. 881 82 

i (i. 16) r~r (s) (k, kl, ks) a, (k)',% (kl) a,, (ks) --~ ~L- L "[~ JtS2S~l 

~r*(2) (k, kl ,  k s )  as* (k) a,,* (kl) a.,* (ks)] 6 (k + k t  -t- ks) dk l  dk~ -~-- .z.L 8 StS 2 

where 

H a )  . .  k l ,  ks) r-r (1) (k, ks, kz) $ B18S ~J~l ~--- ~ 8  8s81 

/(2) /1~ 
, ,,,, t~, kl, ks) ---- ..~ ~,,(1)~,, (kl, k, ks) = ..~.(s),,,, (k, ks, kl) . 

(i. 17) 

We can now write down the most general form of the normal equations in a transparent medium 

(i ~-~-- c 0 , 0  (k)) a s ( k ) =  I dk l  dk ,  [H, ( ]~  (k, kx, k , )  a,, (kx) a,,  (ks) 6 ( k - - k x - -  k , ) q -  

~- 2 H , , . ,  (kl ,  k ,  ka) 6 (k -t- k l  - -  ks) a,,* (kl) as, (ks) + 
~j *(s) * + . . ,  .,., a,,* (kl) a~i.(ks) .6 (k n t- k t  -~ ks)] �9 

Many problems of plasma turbulence lead to non-Hamiltonian equations, even if the free equations are Hamilton- 
Jan [6, 7]. In these circumstances an important part is played by so-called nonlinear Landau damping. However. we shall 
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confine ourselves to the Hamihonian case. and in constructing models we shall start-directly from the Hamiltonians. 

2. Three-wave model'. Let us consider the following model. Suppose we have waves of three modes, A, B, and 
C, described by tlae variables Cki' b k, and c k, respectively.  The laws of dispersion are as follows: 

(-0.4 ~ ml, 0) B = (0~, O) c ~/  O~s 2 .31- S~k 2 . (2. 1) 

The parameter  s is small  and subsequently tends to zero. The laws of dispersion are subject to the conditions: 

c% < oh -- ,  ~2 < o~ . 

The model is considered in the region of wave numbers 

In this region the only first-order dynamic process of the theory of perturbations is 

(s. s) 

(2. s) 

which obeys the conservation laws 

A ~ _ B + C  (s. 4) 

toA ---- {0n q-  a)c, 

We select the Hamiltonian of the system in the form 

kA = kB -~ kc . (2.5) 

H---- I oAakak*dk  -t- Ir *elk -F I coc (k )ckek*dk  -F 
(2. 6) 

+ ~ ~ (ak*bk, ck, -I- akbk,*Ck~*) 6 (k  - -  k l  - -  ks) d k l  dk2 . 

Clearly,  the model  is a classical  analogue of the Lee quantum model.  The absence of cross terms is unimpor-  
tant, since in the region in question they do not contribute to the kinet ic  equation. 

It would be possible to study a more complex model  by introducing some form factor into the interact ion Hami l -  
tonian, bu~ this would not affect  the qual i ta t ive  results. 

The dynamic equations in normal form are obtained by varying Hamil tonian (2.6): 

Oak ~ ' , , ,  

i --~ - -  o~xak = ~ ,J bk,e,~,,8 ( k  - -  k '  - -  k") d k  d k  , 

Obk I i --~ - -  o)Bbk ----" k ak,Ck-*6 (k '  J k - -  k") dk' ark " , (2.7) 

0ek I i -.~ -- O~cCk ---- L bk,*ak.8 (k" - -  It' - -  k)  d k '  c /k" .  

From this dynamic system we can obtain a system of k inet ic  equations, as Oaleev and Karpman did in [1], 

OAk I �9 o-7- = 4 ~ t ~  6 ( k - -  k ' - -  k") 6 (to, - -  to, - -  ra~)(k")) X 

X (Bk, C , - -  AkBk, - -  AkCi~,,) dk'  dk" "t- v k A k ,  

OBR f 0--F = 4rt2L 8 (k '  - -  k - -  k") 8 (0h - -  m~ - -  r% (k")) X (2.8) 

X (Ak'Ck" .qt_ A k ' B k  - -  BkCk") d k '  dk" . ,  

~ 18 k' . . at,~ = 4ns~, (k" - -  - -  k )  6 (c% - -  cos ( k " ) -  co3 (k ) )  X 

X (Ak,Bk. -t- C k A , : , -  CkBk.) elk' ark ", 

where 

Ak = ( a k a k * > ,  B k  = <bkbk*>, Ck = @ k C k * )  ; 

are the mean squares of the wave amplitudes.  Obviously, Eqs. (2. 8) are satisfied by the Rayleigh-Jeans solutions: 

A~ ffi r / mA, B~ = r / m~, Ck = T / mc ,. 

In the first two equations (2.8) we neglec t  the te rm gk 2. Moreover, the t e rm u k, which takes into account the 

sources of  the A-waves,  is formally introduced. 
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Conservation laws (2 .5) imply  that only those C-waves whose wave numbers satisfy the condition 

k~ ~ ko ~ "  8 k 2. ko 2 = ( ~ " -  ~2)~ - cos' (2.9) 

i. e . ,  lie in a very narrow spherical layer, will take part in the process. 

On integrating the last of equations (2.8) with respect to k, we note that the term with the t ime derivative 

,0c dk 
3-i 

is of the order of sk 2 and may be neglected. Introducing the mean value C ---- <Ck>, where the averaging is carried out 
over the volume of the spherical layer, and assuming that the C-wave distribution is spherically symmetrical, we get 

I 6  (k + - -  k") (AwBw, -5 CAk, - -  CBk.) k' dk' d k ' .  (2. 10) 

We shall further confine ourselves to states for which 

Ak' 1 Bk' t 
A - # < ~ "  Bk <~o " 

We expand the right sides of (2. 9) in series with respect to k 0 and exclude from consideration everything beyond the 
second term. Terms containing the first power of k 0 vanish. Considering only stationary states, we get 

(C- -Ak) (Bk+l /~k~  ( ~'k Vr176 + s2ko2) (2.11) 

(C -5 Bk) (Ak -5 1/2 k02AAk) -- CBk = 0 Yk -- 4glas2 

Applying conditions (2. I0) to Eqs. (2, 11) we get: 

I AkVkdk ----- 0 (2. 12) m 

This condition supplements system (2. 11). Further we put: 

~/r for [ k [ > k l ,  %'k-----0 :for: k ~ > I k I > k ~ ,  ";k------~;~ for~ [ k l > k ~  . (2.13) 

The corresponding values of Yk are 7~ and Tz. 

This choice of sources simulates the real situation for instability in the longwave region and damping in the short- 
wave region. We shall assume that k z >> k 1. 

We now isolate B k from the second of equations (2. 11) and, making use of  the smallness of  the term with the La- 
placian, expand it in series with respect to kZ0 up to the first term. Substituting the result in the first equation, we get the 
following equation for Ak: 

i ~i'kA k (c - - A k )  
AAk -5 ~ ( V A k )  2 -5 -  ko~C~ - -  0 . (2. 14) 

We shall solve it in three regions where the Yk' and hence the 7k' are constant. 

1. Solution in the region of  instability. We shall assume that the region of instability is narrow. Then the solution 
in this region can be obtained by expanding A k in powers of k. We get (A0 is still an unknown constant) 

Ak ~-- Ao - -  ak ~ (a - "nAO6ko, C 2 ( c  - -  A~) ) . 

The condition of applicability of the expansion will be a << 1. 

2. Solution in the region o f  transparency. In this region 

t 
AA~ -5 C - -  A k (VAk)~ ---- 0 .  

The general spherically symmetric solution of (2. 15) will be 

Ak = C + o~e ~/k (a, ~---- const), 

(2. 15) 

(2. 16) 

(2. 17) 
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3. Solution in the re_g!0_n of  d a m p s .  We shall assume that in this region A k is small  and cite the l inear ized equa- 
tion (2. 13) and its solution: 

A J k  ---- C-g0-r ~ A~ - -  0, A~ = ~ e x p  ~ ~-o (6 : const) ,', (2. 18) 

For the appl icab i l i ty  of the starting assumptions it is necessary that 

~ /  C.~ I . 

Correct to higher-order  terms, condition (2.12) gives 

(2. 19) 

'[--13 k13A~ ~'~ ~kg'k~ ~ e xp [ - -  \C]( 72 i'/' k2 ]koJ 

Matching the solutions at  the point k I, for the region of transparency we get the approximation 

(2.2o) 

! 71Aokl a 
A~ ~ C - -  (C ~ Ao) e x p  ( - -  

~ 

~ 2  (2. 21) 

Note that A k must be of the order of or less than C (in the long run this is justified). Then, as a result of (2. 15) the ex-  
ponent is small ,  and A k changes l i t t l e  over the region of transparency and is approximate ly  equal to A 0. Therefore in 
matching at the point k 2 it is necessary to proceed with caution, since precisely in the neighborhood of k 2 there is 
a region where the l inear iza t ion  of Eq. (2. 14) is not valid and solution (2. 18) wilt be incorrect.  Therefore at the point 

k 2 we shall match  only the functions and not their derivatives.  We have 

A ~ 6 (2 .22 )  

Substituting (2. 22) in (2. 21), we get 

I { ~1al ~ ~2 C = 7 t ~ ]  " (2.2a) 

Now A 0 can be found from the following consideration. From (2. 21) it  is c lear  that in the region of transparency 

A k differs l i t t l e  from the Rayleigh-Jeans distribution for some unknown temperature.  Assuming that the gas of the A- 
waves and the gas of the C-waves are in a state close to thermal  equil ibrium, we can put: 

o) c (ko) C,  o)c (ko) ~ o)1 - -  c%, or Ao ( o h - -  ~o~)~ t ( v~kt3 ~ (2. 24) 
Ao = ~o---~ 4 ~ s  ~ ~ ~ 1  

From (2. 24) it  follows that  A0 << C. Substituting (2. 23) in (2. 15) and (2. 19), we get the corresponding conditions 

of appl icabi l i ty :  

7~ ( k 2 )  ~ 7~. kok~ 2 ~-T N-~ ~ ~' ~ k ~  ~ 1 . (2 .25 )  

As may be seen from our work, the spectrum of weak turbulence real ly has the character  usually at tr ibuted to it, 
i. e . ,  turbulence is established at the expense of the energy balance between waves generated in the region of instabil i ty 
and damped in the region of absorption. However, the s imple es t imate  that equates the orders of the term viA and the 
nonlinear term is very rough. It is interesting to note that in the region of transparency the spectrum differs l i t t le  from 

the Rayteigh-Jeans distribution. 

The method described can be genera l ized  to include the class of  problems for which the surfaces in k-space  de-  

scribed by the equations 

(k § k~) = co (k) = co (k~), ~o (k - -  k~) = ~o (k) § co (k~) 

is closed, while their maximum dimension is independent of k. 
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